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Chaos and bifurcations in ion traps of cylindrical and spherical design
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With the help of analytical and numerical methods we analyze the nonlinear dynamics of a single ion stored
in periodically driven dynamical traps of cylindrical and spherical design. Sinusoidal and impulsive drives are
investigated. Both traps exhibit a mixed phase space for both drives. Additionally there is a route to chaos via
period-doubling bifurcations of the fundamental stable trapping island. We demonstrate that the bifurcation
scenarios of the kicked and cw-driven traps are quantitatively close and qualitatively identical.
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I. INTRODUCTION trap is a working design for the storage of charged particles.
The focus of these early investigations was on demonstrating
Over the past decades the static Kingdon frdj2], the  the working principle of the trap and using the trap as a mass
Penning trag3,4], and the Paul trafb,6] have evolved into  selective ion source. Thus the emphasis was on the simulta-
indispensible tools in many laboratories working on researcmeous storage of dense clouds of many ions. Single-ion ex-
topics ranging from the precision determination of funda-periments were not realistically possible then since it re-
mental natural constanfg] to the investigation of nonlinear quires a cooling mechanism and the most convenient cooling
phenomend8,9], the construction of frequency standards method, laser cooling, was not proposed until several years
[10], and quantum computef$1]. Other types of traps have |ater[21].
already been proposed and used in actual eXperimentS Recent'y, the Spherica' trap proposed[l{ﬁllﬂ was the
[12,13. All these traps make use of strong focus[ig] to  gypject of experiments performed at the Max-Planck-
achieve charged-particle trapping. Recently, a different trap,stitute for Quantum Optics in Munich. These experiments
design was proposed that makes use of strdefpcusing gy cceeded in demonstrating stable confinement of charged
coupled with electrostatic attraction in order to achieve trap'microspheres in a trap of essentially spherical de§Rgi,

ping [15—17. The trap consists of two concentric metallic ; imentallv that the spherical traps proposed
cylinders with a superposition of an ac and a dc voltagethus broving experime y phen bS prop

. X in [17] are a working design. Since, for concentric shells, the
applied between thertsee, e.g., Fig. 8 of Ref17]). Because field in the trap is the same as the one generated by a suitable

fi | h ic Ki h lindrical X
of its resemblance to the static Kingdon trap, the cy Indrlcacharge at the center of the trap, the spherical trap was called

trap was named ‘“dynamic Kingdon trap.” = Y .
It was proved analytically that on the basis of this prin- the “monopole trap”[22]. Storage times of the order of

ciple stable trapping is possible in both cylindrical anghours were recorded fgr single.charge'd microsphergs in the
spherical geometriekl5—-17. It was demonstrated that in monopole trap. In addition, a first period-doubling bifurca-
analogy to the Paul and Penning traps the dynamic Kingdo#on was observed to occur in the monopole trap.
trap is an ideal device for the investigation of storage, crys- Both types of traps, the ones based on strong focusing and
tallization, and melting of large Coulomb clustdrss]. In ~ the ones based on strong defocusing, operate according to
fact, the existence of a deterministic route to single-ion chaothe same general principle: A charged particle in an inhomo-
strongly suggests the possibility of deterministic melting ofgeneous rapidly oscillating electric field experiences a force
large Coulomb clusters stored in a dynamic Kingdon trap. pointing towards the direction of lower field strength. In
Following publication of the theoretical investigation of other words, a charged particle in a rapidly oscillating elec-
the dynamical Kingdon trap, we learned recertl] that tric field is a “low-field seeker”[6]. On the basis of this fact,
the dynamic Kingdon trap had already been proposed some working principle of the dynamic Kingdon trap is imme-
30 years ago by E. Teloy at the University of Freiburg. Itdiately clear. No matter what the polarity of the particle,
was subsequently investigated under his direction by Bahsince the electric field diminishes towards the outer cylinder
[19] in 1969 and Behr¢20] in 1972. In the course of this of the trap, the ac voltage drives the particle into the direc-
early research a dynamic Kingdon trap was actually built intion of the outer metallic electrode of the trap. This is a
the laboratory and its storage properties were investigatethanifestation of the strong defocusing mechanigbd].
[19,20. In addition, the storage properties of the dynamicCounteracting the defocusing mechanism is the dc voltage.
Kingdon trap were investigated by detailed computer simuits polarity is chosen such that it drives the charged particle
lations. Thus the early theory and experiments by Teloyback towards the inner cylinder. Since the dc focusing force
Bahr, and Behre demonstrated that the dynamic Kingdomnd the ac defocusing force have different radial depen-
denced 15,16, a judicious choice of dc and ac voltages pro-
duces a potential minimum in the free space between the two
*On leave from the Department of Physics, University of Sussexcylinders. If a cooling mechanism is provided, e.g., in the
Falmer, Brighton, United Kingdom. form of laser cooling 23,24, the charged particle may settle
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dqwn into this potential minimum and can be stored there, in V(t)=Vgct+ Vacg(wt). (2.9
principle, forever.

In this paper we focus on the nonlinear dynamics of alt consists of a dc part such th@¥(t)) =V, and an ac part
single ion stored in the dynamic Kingdon trap and the mono-of periodT=2m/w. The form factor of the ac part Hwt),
pole trap. We show that the equations of motion of botha 2sr-periodic function with zero time average. The radial
types of traps are members of a class of nonlinear Mathieaomponent of Newton’s equation for a particle of mass
equations. In contrast to the ideal versions of the “classic”’and chargeQ in the field (2.2) is given by
traps, the static Kingdon trap, the Paul trap, and the Penning
trap, a single ion stored in a dynamic Kingdon trap or a mr=QE(r,t). (2.5
monopole trap may be chaotic. There are two types of chaos
present in the dynamics of strong defocussing trép8oth  If we define the dimensionless time
types of traps exhibit Hamiltonian chaos in certain regions of
their phase spacéi) A chaotic regime is also reached via a T=wt/2 (2.6
cascade of period-doubling bifurcations. In order to get
better qualitative insight into the mechanism of the perio
doublings and especially in order to get an analytical esti- /

X:

nd the dimensionless radius

mate for the onset of the bifurcations, we investigate here
kicked versions of the cylindrical and spherical traps. It is
shown that as far as the qualitative behavior of the bifurca- )
tion trees is concerned, the kicked versions and the continU¥éwton's equatior{2.5) becomes

ously driven versions of the traps display the same behavior. 1

Even quantitatively the bifurcation points of the kicked and X+[s—259(27)]-=0, (2.9
the continuously driven traps are very close. X

2.7)

12
4|QVyd
maw?2In(r,/r;)

where
Il. THE GENERALIZED MATHIEU EQUATION

In this section we show that the equations of motion of an s= % n=— QVae _
ion in a dynamic Kingdon trap, or a monopole trap, are spe- |QVadl 2|QVyd
cial cases of thgeneralized Mathieu equation

(2.9

This equation, as claimed in the beginning of this section, is

.).(+[S_27]f(2t)]xa:0. (21) indeed of the fOfrT(Zl) with a=—1.

We proceed now to show that the equations of motion of

This class of second-order differential equations is characte@ charged particle in a monopole trap are also of the form
f in Eq. (2.1) is an arbitrary 2r-periodic function. Fore ~ Ca@pacitor is given by
=1 andf=cos, we recover the standard definition of the firs V(D)
Mathieu equatiori25]. For «#0,1 we call Eq(2.1) agen- E(rf)= —— —5", (2.10
eralized nonlinear Mathieu equatioft becomes th&onlin- Fo—=ry T
ear Mathieu equatiorior @+ 0,1 andf =cos. Scaling of the
variable x shows that any generalized nonlinear Mathieu
equation can be reduced to one of three classes defined g)z

where nowr, andr, are the radii of the inner and outer
ells, respectively. Introducing the dimensionless t{thé)
d the dimensionless radius

s=0,%£1.
We start by showing the equivalence of the equations of 4QVyg 141 13
motion of the single-ion dynamic Kingdon trap with the spe- x=r/ dol "1°2 1 , .11
cial casew= —1 of the generalized nonlinear Mathieu equa- me? T2=T
tion (2.1). The electric field inside a cylinder capacitor is
given by we obtain from Newton’s equation
__ v St [5—279(27) |50, 2.1
E(r,t)= T 2.2 [ 79(27)] -2 (2.12

wheres and # are defined in Eq(2.9). This finishes the
" demonstration of the equivalence of the cylindrical and
pherical trap equations with special cases of dl).

wherer; andr, are the radii of the inner and outer cylinders
respectively V(t) is the voltage applied to the trap, ands
the distance of the trapped charged particle from the axis ot

the trap. We define the time average of an arbitrary

1T The pseudopotential, introduced by Dehmigb], is a
(h)= —f h(t) dt. 23 Very useful construct for a qualitative analysis of differential
TJo equations with rapidly oscillating drive terms. The pseudo-
potential is obtained by the method of averadigd|. In this
The voltageV(t) in Eq. (2.2) is given by section we apply the pseudopotential method in order to
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search for stable trapping points of the generalized Mathieu (v) a<0. The extremum is given by E@3.6), but this

equation(2.1). time s=1. All the extrema are minima. Special caseg\f
The pseudopotential ¢(x) for Eq. (2.1) consists of two parts are the dynamic Kingdon trap and th? monopole trap. We
specialize now td = cos anda= — 1. This case corresponds
Uer(X) =Ug(X) +Up(X), (3.)  to the dynamic Kingdon trap. We obtaig= | 7|/\/2, recov-

ering the equilibrium solution computed in R¢fL5]. The
whereUg(x) originates from the static andp(Xx) from the  casef=cos anda=—2 corresponds to the monopole trap.
time-varying components of E¢2.1). We have We obtainxo= |5|?>. This is the dimensionless version of
the equilibrium point computed in Rdi22].
%1 for at—1 This finishes our qualitative discu_ssion of 9qui[ibrium
Ugx)=94 @+l (3.2 points of Eq.(2.1) in the pseudo-potential approximation. In
the following section we keep the time dependence and in-
vestigate numerically and analytically the exact behavior of

sin|x| for a=-1.

According to Ref[27], Uy is given by Eq. (2.D.
,72 IV. BIFURCATION SCENARIO AND CHAOS
Up(x)= 7<f2)x2“. (3.3 OF CW-DRIVEN TRAPS
A necessary condition for a trapping point is According to thg p;eudopotential a'nz_alysis presented in
Sec. lll, the dynamic Kingdon trap exhibits a pseudopoten-
dUe4(X) tial minimum for all »>0. This minimum, however, does
g CSXt an?(f?x?*~1=0. (3.4  not always correspond to simple motion of the trapped ion.

As a function of decreasing, the ion undergoes bifurcations
and eventually exhibits a chaos transition at some critical
value z* . In order to illustrate the bifurcation scenario of the
42U 4 (%) cw-driven dynamic Kingdon trap we solved the damped dy-

2 = asx* 1+ a(2a—1) p%(F2)x22~2>0. namic Kingdon equation
X
(3.5

Several cases have to be considered separately. Although

from the mathematical point of view E(R.1) may be inves- for y=0.01 while slowly decreasing the control parameter

tigated for both positive and negative valuesxfand in 7. We obtain the bifurcation diagram shown in Figalwith

general even for compley), we restrict ourselves here to the bifurcations aty;~3.12 andzn,~2.94. The diagram shows

case ofx=0. The only exception are the two integrable caseghe position of the ionx,=x(n#) (n is an integer as a

(i) and(iv) where both positive and negatixeare physical. function of 5. For > 5, the motion converges to a simple
(i) a>1. According to Eq(3.4) the location of the extre- ar-periodic limit cycle. This is the range of control param-

For a minimum we need additionally

X+ 7X+[1—27]COS{27)]§= 4.7

mum is given by eters where the pseudopotential analysis is valid. There is an
accumulation of bifurcations fom* ~2.91 [not shown in
s |HemD Fig. 1(@)].
Xo=| — m (3.6 We now want to obtain some analytical insight into the

location of the first bifurcation point at;. The following
Apparently, a physical extremum exists only for — 1. Ac- analytical derivations are based on the dynamic Kingdon
cording to Eq.(3.5), it is always a minimum. The cag® is  equation(4.1) for y=0. For »>», the limit cycle of Eq.
relevant for higher multipole trag®8]. (4.1 is 7 periodic. Therefore, we expand the solution in this

(i) @a=1. This is the integrable case of the ordinary region according to

Mathieu equation. It corresponds to the Paul tf&p Ac-
cording to Egs.(3.4) and (3.5), the discussion of the exis-
tence and stability of trapping points depends on the value of
the parameter

o0

X= ZO A,coq2vr). (4.2

Substituting Eq(4.2) into Eq. (4.1), we obtain

2 _
Since the pseudopotential analysis is valid only for small ZWEZO AR uHCcog27(v+ p) 1+ cog27(v— )]}
we can rule out the cage=0. Thus Eq.(3.4) has a single
solutionx=0. According to Eq.(3.5), it is a minimum for +2ncog27)—1=0. (4.3

p>0. Sincey is small this requires=1.
(iii) 0<a<1. The extremum is again given by E®.6).
However, for casgiii ) it does not correspond to a minimum. Ag=+ 7]/\/5, A=7F 142, (4.4
(iv) «=0. This is another integrable case of the general-
ized Mathieu equatio2.1). hence

Keeping only the first two terms in E@4.2), we obtain
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FIG. 1. Bifurcation diagram of the dynamic Kingdon trap. Plot-
ted is the scaled position of a charged particle in the trap at times

FIG. 2. Same as Fig. 1, but for the monopole trap.

7=nm (N is an integeras a function of the control parameter(a)
The cw-driven dynamic Kingdon trap arfd) the kicked Kingdon
trap.

x~[ p—cog27)]//2. (4.5)

At the first bifurcation the period of the limit cycle doubles.
Thus, for <7, we consider the solution

X= 20 B,coq v7). (4.6)

In this case keeping the first three terms in E4.6), we
obtain two solutions. The first on8y,=A,, B;=0, andB,
=A,, is identical to Eq(4.5. A second nontrivial solution
is given by

5
Bo=52/1227+1), Bi=\(5-27)/3,
B,= —(27+1)/12.

At 7= 7, Egs.(4.2) and (4.6) must be the same. This im-
pliesB;(7,)=0 and thusy,;=5/2.

A better approximation ofy; is obtained by keeping one
more term in Eq(4.6). We obtain the four conditions

(4.7

BZ+4B3+9B3—2=0, (4.89

ZBOBl+ 5Ble+ 13828320, (48b)
8ByB,+ B2+ 10B,B3+47=0, (4.80
18B,B;+5B,B,=0. (4.80

Close to the first bifurcation we ha®&,— * 5/\2, B;—0,
B,— ¥1/y2, andB;—0. From Egs.(4.8H and (4.8d we
obtain

36B3+ 90B,B,— 65B5=0. 4.9
Using the limiting values foB, and B, in Eqg. (4.9) we
obtain

15+ 485
2

m=——p5—~3.085. (4.10

The relative error of this result is of the order of 1%.

We show now that the bifurcation diagram of the mono-
pole trap @@= —2) is qualitatively the same as the bifurca-
tion diagram for the dynamic Kingdon equation. Solving nu-
merically the monopole equation

1
X+ yk+[1-27 cog27)]5=0, (4.11)

we obtain the bifurcation diagram shown in FigaR Thus
both the dynamic Kingdon trap and the monopole trap ex-
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hibit a period-doubling cascade into chaos. An analytical es- (.15 . \ . \
timate of », for the monopole trap along the lines of Egs. ’
(4.2—(4.7) yields 7,=(35+57)/24~2. In analogy to the
dynamic Kingdon trap, this result can be improved by keep- _
ing more terms in the Fourier expansionsxof 0.05 L
Both the dynamic Kingdon trap and the monopole trap are '
nonlinear Hamiltonian systems. Such systems generically ex-
hibit a mixed phase space at any value of the system param-
eters. Thus we suspect that even #0r 7, both traps exhibit _
Hamiltonian chaos in some parts of their phase space. This is
confirmed in Fig. 8a), where we show a Poincaserface of
section for the dynamic Kingdon trap foj=4. We see a
large elliptic island surrounded by intricate island chains and

0.15 L

chaos. The elliptic island in Fig.(8 corresponds to the 45
stable trapping region of the dynamic Kingdon trap.
In Fig. 3(b) we show a phase-space portrait fgr=3.05, 0.010

i.e., after the first bifurcation of Fig.(4). The stable island .
of Fig. 3(a@) has split into two stable islands with surrounding %
chaos. The two islands of Fig(l® split into four islands 0.005
after the second bifurcation ap=7,. This situation is
shown in Fig. &c). The two islands of Fig. ®) have split
into four islands located at~1.2 andx~1.8. The two is-
lands atx=1.2, however, are not resolved on the scale of

Fig. 3(c).

0.000

-0.005
V. KICKED TRAPS

In this section we present a detailed analysis of a class of »
generalized nonlinear Mathieu equations where the drive —0-010, ==
term f is a train of alternatings kicks. The strength and )
frequency of thed kicks are adjusted such that the funda-
mental harmonic of the array af kicks coincides with the
drive term 2ycos(2?) of a cw-driven trap. Inasmuch as x L (C)
higher harmonics do not contribute appreciably to the dy-
namics of the particle, the cw-driven problem can be re-
placed by the kicked problem, a problem much more ame-
nable to analytical treatment. In fact, we will show that the
bifurcation scenarios for the cw-driven problem and the 0.000
kicked problem are qualitatively identical and quantitatively
very close to each other. Thus, replacing the cw drive with a I
train of & kicks offers substantial insight into the mechanism -0.005 |
of the bifurcation cascades that occur in these traps.

In what follows we assume without loss of generality I
=0. The casey<<0 can be recovered trivially by a shift ef -0.010 i RIS
Only for s=1 is stable trapping possible. For all the classic 11 13 15 x 17 19
traps (static Kingdon, Paul, and Penninthe equations of
motion of a single charged particle are integrable. This is the FIG. 3. Poincaresections for the dynamic Kingdon trap at dif-
reason for the absence of single-ion chaos in the ideal veferent values of the control parameter (a) =4 (before the first
sions of these traps. The Kingdon equat{drl), however, is  bifurcation, (b) 7=23.05 (after the first bifurcation and (c) »
nonlinear, a necessary ingredient for chaos. That the nonlir=2.936(after the second bifurcation
earity exhibited by Eq(4.1) is also sufficient for Eq4.1) to
possess chaotic solutions has already been shown in Sec.
(see Fig. 3. Insight and analytical control over the route to
chaos can be derived from the kicked Kingdon trap.

The starting point is the nonlinear Mathieu equation

0.010 g

0.005

T
|

ith a+bd_(7), wherea andb are constants to be adjusted
or best results. In this case, however, the constafdrces
us to solve the one-dimensional equations of motion of the
ion in a 1k potential. Although trivially integrable, the pres-
ence of the static ¥/potential considerably complicates the
resulting mapping equations. This problem is avoided by
modeling the drive term in the square brackets in €&ql)
by a train of alternatings kicks. This way we obtain the
equation of motion

X+[s—27n coqg27)]x*=0. (5.9

The aim is to represent the drive tesn 2ncos(2) in Eq.
(5.1) as accurately as possible with the helpmeperiodic §
functionsé,.(7). One possibility is to replace the drive term X+[—ad (1) +bd (7— w/2)]x*=0, (5.2
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whereé.(7) is the mr-periodic § function. Its Fourier expan-

sion is

©

5,,(7):%;00 exp(2i vr). (5.9
Using Eq.(5.3) we have
[—ad (1) +bdé (17— 7/2)]
=— %[(a—b)+2(a+ b)cog27)
+2(a—b)cog4r)+---]. (5.4)

Thus, neglecting higher harmonics in E§.4), a good ap-
proximation to Eq.(5.1) is obtained if we choose

. a . a
a—E(n—s), b—§(77+3)- (55)

We denote by X,,v,) the values ofx and x immediately
before the kick ar=n= and by /,v,) the respective val-
ues immediately after the kick at=ns. Also, we denote by
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Ua—1) a
] v == Zix )

(5.11

Physically the fixed point is important because it corresponds
to the stable minimum in which the trapped particle settles in
the presence of cooling. The first bifurcation happens at the
value », where the fixed point turns unstable. The stability

properties of the fixed point are determined by the Jacobian
matrix

4
U=y ___ Je __
x(1 —(aw[(a/b)l 1]

IXn+1
X,

IXn+1

du,

(5.12

Wiy
IXn

Wnig
dug

evaluated at the fixed point. Since the mappifd.0 repre-
sents a Hamiltonian flow, the determinant of the Jacobian
matrix J has absolute magnitude 1. Thus the stability of the
fixed point is determined by the trace &f For |Tr(J)|<2

the eigenvalues af are complex conjugate points on the unit
circle. Thus, the fixed point is stable f¢Tr(J)|<2. For
|Tr(J)|>2 exactly one of the eigenvalues dfexceeds 1 in
absolute magnitude and the fixed point is unstable. Thus the

(X,,7,) the values ok andx immediately before the kick at first bifurcation happens exactly [dr(J)| =2. The trace of
7=(n+1/2)7 and by (X, ,7;) the respective values imme- is easily evaluated. At the fixed point we obtain

diately after the kick at-=(n+ 1/2)#. Then the solution of

Eq. (5.2 is obtained analytically as a mapping from kick

numbern to kick numbern+1 composed of four step§.)
propagation over the kick at=nr,

Xp=Xpn, Uh=vptaxy; (5.6
(i) free propagation to the kick at=(n+ 1/2),
X=Xyt avp2, T,=v}; (5.7
(iii) propagation over the kick at=(n+1/2),
Xo=%X,, U,=0,—b%XS; (5.9
and (iv) free propagation to the kick at=(n+ 1),
Xn+l:’ir;+w'5r;/2! Un+1:’5r;. (59)

The four stepg5.6)—(5.9) can be condensed into one. We

obtain a mapping that propagates from the kickatn« to
the kick at7=(n+1):

23

T o
Xn+ E(Un_"axn)

T
Xpt+1=Xp+ 7T(vn+ax,‘f)—5b

T [e3
Xnto(vptaxy)| . (56.10

Upnr1=vptax,—b 5

The fixed point of Eq(5.10 is given by

Tr(J)=2+4a(a—1)(p—1)(%—1), (5.13

where

P (5.19

7—Ss 1/a
=2

For p>0 we have Tr{)<2. Thus the first bifurcation hap-
pens at Trd) = —2, which yields

1
p1=1+ ;{1i Vda(a—1)+1} (5.19
or
1+pf
71=S e (51@
1-p3

Specializing toa= —1 (the dynamic Kingdon trgp we ob-
tain the mapping

ar
Xnt1=Xp+ (v +alXp,) —ben/(x§+ XU 2+ wal2),

Unt1=Un+a/Xy—bXy /(X34 mXpv o /2+ mal2).

(5.17

From Eq.(5.11) we obtain the fixed point and the velocity at
the fixed point
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T the cw-driven dynamic Kingdon trap. It should also be men-

X<1):Z |p—1], vM=-sgn»—-1). (5.18 tioned that kicked traps not only are a useful construct in our
analysis of the cw-driven traps but they are also a theoreti-

Approachingn= 1 from large values of;, Eq.(5.18 telisus ~ cally legitimate and practically realizable model in them-

that the radial position of the trapped particle approache§elves.

monotonically the location of the inner electrode. Since

x(M=0 for »=1 this means that the particle encounters the VI. DISCUSSION

inner electrode at some.>1. Thus we obtain a lower

bound > n.>1 for physically meaningful; values.

For «=—1 the trace of the Jacobian is given by

It may seem that the dynamic Kingdon trap is not a real-
istic device since it requires the cylinder to be infinitely ex-
tended. This is not the case. A finite device is obtained either
by the use of end cajj45] or by “tapering” the ends of the
Tr(J)=2-32(7"-1). (5.19  cylinder. This way the trapped particle is focused towards

the symmetry plane of the trap, where it experiences exactly
the same forces as in the case of an infinite cylinder. Thus all
the theoretical analysis presented in the previous sections
aélpplies without change to tapered traps or traps with end
caps. That this principle works in practice was recently dem-

We see that for largey, |Tr(J)|<2, i.e., the fixed point is
stable and so is the trap. In practical terms the re&ult9

tion point for the dynamic Kingdon trap since any will

lead to stable trapping if only is sufficiently large. Accord- . strated with the open geometry monopole 2.
ing to Eq.(5.16, the first bifurcation happens gt =3. This Another cause for concern may be the use of impulsive
result is very close_to the p05|t.|on _of the first bifurcation of ;s in our analytical analysis presented in Sec. V. It is true
the continuously driven dynamic Kingdon trap that was de+p¢ in the case of cw-driven traps the kicks are an approxi-
termined to occur ap, =3.124 ... [15]. mation to the continuous time dependence of the drive term.
_Itis even possible to compute the location of the SeconGris approximation becomes progressively better as the
bifurcation of the mapping5.17) analytically. The computa- qrive term is approximated with more and more kicks. How-
tions are lengthy and tedious and are not reproduced hergyer there is another way of looking at the kicks. The kicks

The result isy,=37/13=2.846 ... . This result t00 com- 5y pecome an excellent approximation to the exact time
pares very favorably with the location of the second bifurca-yependence of the drive term in case the traps are driven
tion of the cw-driven dynamic Kingdon trap computed to be ith narrow pulses generated by a pulse generator. Such

772:2-9$ s [15]. ) schemes were previously suggested in the context of local-

Specializing toa=—2 (the monopoleltra)p we obtain jzation studies with diatomic moleculef29]. However,
p1=3. Fromp, we computer, =5/4 andx!)=7/16. Again  while the driven molecules need to be perturbed with pulses
these results compare favorably with the location of the fixedyjth a repetition rate of the order of gigahertz, and require a
point and the location of the first bifurcation of the monopolepyise width of the order of picoseconds, the pulses for the
trap. R _ ~ realization of a kicked Kingdon trap, e.g., may be in the

Laser cooling is simulated by adding a small dampingmegahertz region where sharp pulses can be produced with-
term to Eq.(5.2. We obtain the damped kicked nonlinear gyt any technical problems. The frequency requirements are
Mathieu equation even less stringent in the case of trapped macroscopic par-

ticles[22,30.
X+ yx+[—ad (1)+bs (71— w/2)]x*=0. (5.20
VIl. SUMMARY AND CONCLUSIONS

In analogy to Eq(5.10 we obtain the mapping equations for
Eq. (5.20 in the form In this paper we presented a detailed analysis of the dy-

namic Kingdon trap and the monopole trap for cw and im-
pulsive drives. In the course of our analysis it proved conve-
nient to define a class of nonlinear equations, the generalized
(5.2)  nonlinear Mathieu equations. These equations themselves
constitute a promising field of analysis for future investiga-

Xn+1:Xn+,Uv(1+)\)(Un"_axg)_b/-L[Xn+/-L(Un+aXr{T)]a1

Uns1=N2(vp+ax®) —bA[x,+ u(v,+ax?)]?, tions. We presented a qualitative analysis of the generalized
nonlinear Mathieu equations within the framework of the

where pseudopotential theory. We showed that both traps, the dy-
namic Kingdon trap and the monopole trap, exhibit a bifur-

A=exp(—yml2), wp=(1—\)ly. (5.22 cation scenario of the fundamental stable trapping island. In

addition we showed in the case of the dynamic Kingdon trap
The damping term ensures that we follow adiabatically thethat the trapping island is surrounded by Hamiltonian chaos.
stable branches of the bifurcation tree. Wjth-0.01 we ob-  We succeeded in computing analytically the location of the
tain the bifurcation diagram shown in Fig(k). It may be first bifurcation for the kicked nonlinear Mathieu equations.
compared with the bifurcation diagram of the continuouslyln the case of the kicked dynamic Kingdon equation we were
driven dynamic Kingdon trap shown in Fig(gl. The bifur-  able to compute analytically the location of the second bifur-
cation diagrams are qualitatively the same and quantitativelgation point. Approximate analytical expressions for the lo-
similar. This proves that even as far as the route to chaos igation of the first bifurcation point were computed in the
concerned, the kicked Kingdon trap is a very good model forcase of the cw-driven traps. Experiments, such as the one
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points. We propose to use strongly defocusing traps such aearch on the dynamic Kingdon trap conducted at Freiburg
the dynamic Kingdon trap or the monopole trap as experiUniversity to our attention. Financial support by the Deut-
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