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Chaos and bifurcations in ion traps of cylindrical and spherical design

R. Blümel, E. Bonneville, and A. Carmichael*
Fakultät für Physik, Albert-Ludwigs-Universita¨t, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany

~Received 21 July 1997!

With the help of analytical and numerical methods we analyze the nonlinear dynamics of a single ion stored
in periodically driven dynamical traps of cylindrical and spherical design. Sinusoidal and impulsive drives are
investigated. Both traps exhibit a mixed phase space for both drives. Additionally there is a route to chaos via
period-doubling bifurcations of the fundamental stable trapping island. We demonstrate that the bifurcation
scenarios of the kicked and cw-driven traps are quantitatively close and qualitatively identical.
@S1063-651X~98!01202-1#

PACS number~s!: 05.45.1b, 32.80.Pj
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I. INTRODUCTION

Over the past decades the static Kingdon trap@1,2#, the
Penning trap@3,4#, and the Paul trap@5,6# have evolved into
indispensible tools in many laboratories working on resea
topics ranging from the precision determination of fund
mental natural constants@7# to the investigation of nonlinea
phenomena@8,9#, the construction of frequency standar
@10#, and quantum computers@11#. Other types of traps hav
already been proposed and used in actual experim
@12,13#. All these traps make use of strong focusing@14# to
achieve charged-particle trapping. Recently, a different t
design was proposed that makes use of strongdefocusing
coupled with electrostatic attraction in order to achieve tr
ping @15–17#. The trap consists of two concentric metall
cylinders with a superposition of an ac and a dc volta
applied between them~see, e.g., Fig. 8 of Ref.@17#!. Because
of its resemblance to the static Kingdon trap, the cylindri
trap was named ‘‘dynamic Kingdon trap.’’

It was proved analytically that on the basis of this pr
ciple stable trapping is possible in both cylindrical a
spherical geometries@15–17#. It was demonstrated that i
analogy to the Paul and Penning traps the dynamic King
trap is an ideal device for the investigation of storage, cr
tallization, and melting of large Coulomb clusters@16#. In
fact, the existence of a deterministic route to single-ion ch
strongly suggests the possibility of deterministic melting
large Coulomb clusters stored in a dynamic Kingdon trap

Following publication of the theoretical investigation
the dynamical Kingdon trap, we learned recently@18# that
the dynamic Kingdon trap had already been proposed s
30 years ago by E. Teloy at the University of Freiburg.
was subsequently investigated under his direction by B
@19# in 1969 and Behre@20# in 1972. In the course of this
early research a dynamic Kingdon trap was actually buil
the laboratory and its storage properties were investiga
@19,20#. In addition, the storage properties of the dynam
Kingdon trap were investigated by detailed computer sim
lations. Thus the early theory and experiments by Tel
Bahr, and Behre demonstrated that the dynamic King

*On leave from the Department of Physics, University of Suss
Falmer, Brighton, United Kingdom.
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trap is a working design for the storage of charged partic
The focus of these early investigations was on demonstra
the working principle of the trap and using the trap as a m
selective ion source. Thus the emphasis was on the sim
neous storage of dense clouds of many ions. Single-ion
periments were not realistically possible then since it
quires a cooling mechanism and the most convenient coo
method, laser cooling, was not proposed until several ye
later @21#.

Recently, the spherical trap proposed in@15,17# was the
subject of experiments performed at the Max-Plan
Institute for Quantum Optics in Munich. These experime
succeeded in demonstrating stable confinement of cha
microspheres in a trap of essentially spherical design@22#,
thus proving experimentally that the spherical traps propo
in @17# are a working design. Since, for concentric shells,
field in the trap is the same as the one generated by a sui
charge at the center of the trap, the spherical trap was ca
the ‘‘monopole trap’’ @22#. Storage times of the order o
hours were recorded for single charged microspheres in
monopole trap. In addition, a first period-doubling bifurc
tion was observed to occur in the monopole trap.

Both types of traps, the ones based on strong focusing
the ones based on strong defocusing, operate accordin
the same general principle: A charged particle in an inhom
geneous rapidly oscillating electric field experiences a fo
pointing towards the direction of lower field strength.
other words, a charged particle in a rapidly oscillating ele
tric field is a ‘‘low-field seeker’’@6#. On the basis of this fact
the working principle of the dynamic Kingdon trap is imm
diately clear. No matter what the polarity of the partic
since the electric field diminishes towards the outer cylin
of the trap, the ac voltage drives the particle into the dir
tion of the outer metallic electrode of the trap. This is
manifestation of the strong defocusing mechanism@15#.
Counteracting the defocusing mechanism is the dc volta
Its polarity is chosen such that it drives the charged part
back towards the inner cylinder. Since the dc focusing fo
and the ac defocusing force have different radial dep
dences@15,16#, a judicious choice of dc and ac voltages pr
duces a potential minimum in the free space between the
cylinders. If a cooling mechanism is provided, e.g., in t
form of laser cooling@23,24#, the charged particle may settl

x,
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down into this potential minimum and can be stored there
principle, forever.

In this paper we focus on the nonlinear dynamics o
single ion stored in the dynamic Kingdon trap and the mo
pole trap. We show that the equations of motion of bo
types of traps are members of a class of nonlinear Math
equations. In contrast to the ideal versions of the ‘‘class
traps, the static Kingdon trap, the Paul trap, and the Pen
trap, a single ion stored in a dynamic Kingdon trap or
monopole trap may be chaotic. There are two types of ch
present in the dynamics of strong defocussing traps.~i! Both
types of traps exhibit Hamiltonian chaos in certain regions
their phase space.~ii ! A chaotic regime is also reached via
cascade of period-doubling bifurcations. In order to ge
better qualitative insight into the mechanism of the per
doublings and especially in order to get an analytical e
mate for the onset of the bifurcations, we investigate h
kicked versions of the cylindrical and spherical traps. It
shown that as far as the qualitative behavior of the bifur
tion trees is concerned, the kicked versions and the cont
ously driven versions of the traps display the same behav
Even quantitatively the bifurcation points of the kicked a
the continuously driven traps are very close.

II. THE GENERALIZED MATHIEU EQUATION

In this section we show that the equations of motion of
ion in a dynamic Kingdon trap, or a monopole trap, are s
cial cases of thegeneralized Mathieu equation

ẍ1@s22h f ~2t !#xa50. ~2.1!

This class of second-order differential equations is charac
ized by three control parameterss, h, anda. The drive term
f in Eq. ~2.1! is an arbitrary 2p-periodic function. Fora
51 and f 5cos, we recover the standard definition of t
Mathieu equation@25#. For aÞ0,1 we call Eq.~2.1! a gen-
eralized nonlinear Mathieu equation. It becomes thenonlin-
ear Mathieu equationfor aÞ0,1 andf 5cos. Scaling of the
variable x shows that any generalized nonlinear Mathi
equation can be reduced to one of three classes define
s50,61.

We start by showing the equivalence of the equations
motion of the single-ion dynamic Kingdon trap with the sp
cial casea521 of the generalized nonlinear Mathieu equ
tion ~2.1!. The electric field inside a cylinder capacitor
given by

E~r ,t !5
V~ t !

r ln~r 2 /r 1!
, ~2.2!

wherer 1 andr 2 are the radii of the inner and outer cylinder
respectively,V(t) is the voltage applied to the trap, andr is
the distance of the trapped charged particle from the axi
the trap. We define the time average of an arbitr
T-periodic functionh(t) by

^h&5
1

TE0

T

h~ t ! dt. ~2.3!

The voltageV(t) in Eq. ~2.2! is given by
n
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V~ t !5Vdc1Vacg~vt !. ~2.4!

It consists of a dc part such that^V(t)&5Vdc and an ac part
of periodT52p/v. The form factor of the ac part isg(vt),
a 2p-periodic function with zero time average. The rad
component of Newton’s equation for a particle of massm
and chargeQ in the field ~2.2! is given by

mr̈5QE~r ,t !. ~2.5!

If we define the dimensionless time

t5vt/2 ~2.6!

and the dimensionless radius

x5rYF 4uQVdcu

mv2ln~r 2 /r 1!
G 1/2

, ~2.7!

Newton’s equation~2.5! becomes

ẍ1@s22hg~2t!#
1

x
50, ~2.8!

where

s5
QVdc

uQVdcu
, h52

QVac

2uQVdcu
. ~2.9!

This equation, as claimed in the beginning of this section
indeed of the form~2.1! with a521.

We proceed now to show that the equations of motion
a charged particle in a monopole trap are also of the fo
~2.1!. The electric field between the two shells of a spheri
capacitor is given by

E~r ,t !5
r 1r 2

r 22r 1

V~ t !

r 2 , ~2.10!

where nowr 1 and r 2 are the radii of the inner and oute
shells, respectively. Introducing the dimensionless time~2.6!
and the dimensionless radius

x5rYF4uQVdcu

mv2

r 1r 2

r 22r 1
G 1/3

, ~2.11!

we obtain from Newton’s equation

ẍ1@s22hg~2t!#
1

x250, ~2.12!

where s and h are defined in Eq.~2.9!. This finishes the
demonstration of the equivalence of the cylindrical a
spherical trap equations with special cases of Eq.~2.1!.

III. PSEUDOPOTENTIAL ANALYSIS

The pseudopotential, introduced by Dehmelt@26#, is a
very useful construct for a qualitative analysis of different
equations with rapidly oscillating drive terms. The pseud
potential is obtained by the method of averaging@27#. In this
section we apply the pseudopotential method in order
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search for stable trapping points of the generalized Math
equation~2.1!.

The pseudopotentialUe f f(x) for Eq. ~2.1! consists of two parts

Ue f f~x!5US~x!1UD~x!, ~3.1!

whereUS(x) originates from the static andUD(x) from the
time-varying components of Eq.~2.1!. We have

US~x!5H s

a11
xa11 for aÞ21

slnuxu for a521.

~3.2!

According to Ref.@27#, UD is given by

UD~x!5
h2

2
^ f 2&x2a. ~3.3!

A necessary condition for a trapping point is

dUe f f~x!

dx
5sxa1ah2^ f 2&x2a2150. ~3.4!

For a minimum we need additionally

d2Ue f f~x!

dx2
5asxa211a~2a21!h2^ f 2&x2a22.0.

~3.5!

Several cases have to be considered separately. Altho
from the mathematical point of view Eq.~2.1! may be inves-
tigated for both positive and negative values ofx ~and in
general even for complexx), we restrict ourselves here to th
case ofx>0. The only exception are the two integrable cas
~ii ! and~iv! where both positive and negativex are physical.

~i! a.1. According to Eq.~3.4! the location of the extre-
mum is given by

x05F2
s

ah2^ f 2&G
1/~a21!

. ~3.6!

Apparently, a physical extremum exists only fors521. Ac-
cording to Eq.~3.5!, it is always a minimum. The case~i! is
relevant for higher multipole traps@28#.

~ii ! a51. This is the integrable case of the ordina
Mathieu equation. It corresponds to the Paul trap@5#. Ac-
cording to Eqs.~3.4! and ~3.5!, the discussion of the exis
tence and stability of trapping points depends on the valu
the parameter

p5s1h2^ f 2&. ~3.7!

Since the pseudopotential analysis is valid only for smallh,
we can rule out the casep50. Thus Eq.~3.4! has a single
solution x50. According to Eq.~3.5!, it is a minimum for
p.0. Sinceh is small this requiress51.

~iii ! 0,a,1. The extremum is again given by Eq.~3.6!.
However, for case~iii ! it does not correspond to a minimum

~iv! a50. This is another integrable case of the gene
ized Mathieu equation~2.1!.
u

gh

s

of

l-

~v! a,0. The extremum is given by Eq.~3.6!, but this
time s51. All the extrema are minima. Special cases of~v!
are the dynamic Kingdon trap and the monopole trap.
specialize now tof 5cos anda521. This case correspond
to the dynamic Kingdon trap. We obtainx05 uhu/A2, recov-
ering the equilibrium solution computed in Ref.@15#. The
casef 5cos anda522 corresponds to the monopole tra
We obtainx05 uhu2/3. This is the dimensionless version o
the equilibrium point computed in Ref.@22#.

This finishes our qualitative discussion of equilibriu
points of Eq.~2.1! in the pseudo-potential approximation. I
the following section we keep the time dependence and
vestigate numerically and analytically the exact behavior
Eq. ~2.1!.

IV. BIFURCATION SCENARIO AND CHAOS
OF CW-DRIVEN TRAPS

According to the pseudopotential analysis presented
Sec. III, the dynamic Kingdon trap exhibits a pseudopot
tial minimum for all h.0. This minimum, however, doe
not always correspond to simple motion of the trapped i
As a function of decreasingh, the ion undergoes bifurcation
and eventually exhibits a chaos transition at some crit
valueh* . In order to illustrate the bifurcation scenario of th
cw-driven dynamic Kingdon trap we solved the damped d
namic Kingdon equation

ẍ1g ẋ1@122hcos~2t!#
1

x
50 ~4.1!

for g50.01 while slowly decreasing the control parame
h. We obtain the bifurcation diagram shown in Fig. 1~a! with
bifurcations ath1'3.12 andh2'2.94. The diagram show
the position of the ionxn5x(np) (n is an integer! as a
function of h. For h.h1 the motion converges to a simpl
p-periodic limit cycle. This is the range of control param
eters where the pseudopotential analysis is valid. There i
accumulation of bifurcations forh* '2.91 @not shown in
Fig. 1~a!#.

We now want to obtain some analytical insight into t
location of the first bifurcation point ath1. The following
analytical derivations are based on the dynamic Kingd
equation~4.1! for g50. For h.h1 the limit cycle of Eq.
~4.1! is p periodic. Therefore, we expand the solution in th
region according to

x5 (
n50

`

Ancos~2nt!. ~4.2!

Substituting Eq.~4.2! into Eq. ~4.1!, we obtain

2 (
n,m50

`

AnAmm2$cos@2t~n1m!#1cos@2t~n2m!#%

12hcos~2t!2150. ~4.3!

Keeping only the first two terms in Eq.~4.2!, we obtain

A056h/A2, A1571/A2, ~4.4!

hence
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x'@h2cos~2t!#/A2. ~4.5!

At the first bifurcation the period of the limit cycle double
Thus, forh,h1 we consider the solution

x5 (
n50

`

Bncos~nt!. ~4.6!

In this case keeping the first three terms in Eq.~4.6!, we
obtain two solutions. The first one,B05A0, B150, andB2
5A1 , is identical to Eq.~4.5!. A second nontrivial solution
is given by

B05
5

24
A12~2h11!, B15A~522h!/3,

B252A~2h11!/12. ~4.7!

At h5h1 Eqs. ~4.2! and ~4.6! must be the same. This im
plies B1(h1)50 and thush155/2.

A better approximation ofh1 is obtained by keeping on
more term in Eq.~4.6!. We obtain the four conditions

B1
214B2

219B3
22250, ~4.8a!

FIG. 1. Bifurcation diagram of the dynamic Kingdon trap. Plo
ted is the scaled position of a charged particle in the trap at ti
t5np ~n is an integer! as a function of the control parameterh. ~a!
The cw-driven dynamic Kingdon trap and~b! the kicked Kingdon
trap.
2B0B115B1B2113B2B350, ~4.8b!

8B0B21B1
2110B1B314h50, ~4.8c!

18B0B315B1B250. ~4.8d!

Close to the first bifurcation we haveB0→6h/A2, B1→0,
B2→71/A2, andB3→0. From Eqs.~4.8b! and ~4.8d! we
obtain

36B0
2190B0B2265B2

250. ~4.9!

Using the limiting values forB0 and B2 in Eq. ~4.9! we
obtain

h15
151A485

12
'3.085. ~4.10!

The relative error of this result is of the order of 1%.
We show now that the bifurcation diagram of the mon

pole trap (a522) is qualitatively the same as the bifurc
tion diagram for the dynamic Kingdon equation. Solving n
merically the monopole equation

ẍ1g ẋ1@122h cos~2t!#
1

x250, ~4.11!

we obtain the bifurcation diagram shown in Fig. 2~a!. Thus
both the dynamic Kingdon trap and the monopole trap

s

FIG. 2. Same as Fig. 1, but for the monopole trap.
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hibit a period-doubling cascade into chaos. An analytical
timate of h1 for the monopole trap along the lines of Eq
~4.2!–~4.7! yields h15(3515A7)/24'2. In analogy to the
dynamic Kingdon trap, this result can be improved by ke
ing more terms in the Fourier expansions ofx.

Both the dynamic Kingdon trap and the monopole trap
nonlinear Hamiltonian systems. Such systems generically
hibit a mixed phase space at any value of the system pa
eters. Thus we suspect that even forh.h1 both traps exhibit
Hamiltonian chaos in some parts of their phase space. Th
confirmed in Fig. 3~a!, where we show a Poincare´ surface of
section for the dynamic Kingdon trap forh54. We see a
large elliptic island surrounded by intricate island chains a
chaos. The elliptic island in Fig. 3~a! corresponds to the
stable trapping region of the dynamic Kingdon trap.

In Fig. 3~b! we show a phase-space portrait forh53.05,
i.e., after the first bifurcation of Fig. 1~a!. The stable island
of Fig. 3~a! has split into two stable islands with surroundin
chaos. The two islands of Fig. 3~b! split into four islands
after the second bifurcation ath5h2. This situation is
shown in Fig. 3~c!. The two islands of Fig. 3~b! have split
into four islands located atx'1.2 andx'1.8. The two is-
lands atx'1.2, however, are not resolved on the scale
Fig. 3~c!.

V. KICKED TRAPS

In this section we present a detailed analysis of a clas
generalized nonlinear Mathieu equations where the d
term f is a train of alternatingd kicks. The strength and
frequency of thed kicks are adjusted such that the fund
mental harmonic of the array ofd kicks coincides with the
drive term 2hcos(2t) of a cw-driven trap. Inasmuch a
higher harmonics do not contribute appreciably to the
namics of the particle, the cw-driven problem can be
placed by the kicked problem, a problem much more am
nable to analytical treatment. In fact, we will show that t
bifurcation scenarios for the cw-driven problem and t
kicked problem are qualitatively identical and quantitative
very close to each other. Thus, replacing the cw drive wit
train of d kicks offers substantial insight into the mechanis
of the bifurcation cascades that occur in these traps.

In what follows we assume without loss of generalityh
>0. The caseh,0 can be recovered trivially by a shift oft.
Only for s51 is stable trapping possible. For all the clas
traps ~static Kingdon, Paul, and Penning! the equations of
motion of a single charged particle are integrable. This is
reason for the absence of single-ion chaos in the ideal
sions of these traps. The Kingdon equation~4.1!, however, is
nonlinear, a necessary ingredient for chaos. That the non
earity exhibited by Eq.~4.1! is also sufficient for Eq.~4.1! to
possess chaotic solutions has already been shown in Se
~see Fig. 3!. Insight and analytical control over the route
chaos can be derived from the kicked Kingdon trap.

The starting point is the nonlinear Mathieu equation

ẍ1@s22h cos~2t!#xa50. ~5.1!

The aim is to represent the drive terms22hcos(2t) in Eq.
~5.1! as accurately as possible with the help ofp-periodicd
functionsdp(t). One possibility is to replace the drive ter
s-

-

e
x-
m-

is

d

f

of
e

-
-
-

a

e
r-

n-

IVwith a1bdp(t), wherea andb are constants to be adjuste
for best results. In this case, however, the constanta forces
us to solve the one-dimensional equations of motion of
ion in a 1/x potential. Although trivially integrable, the pres
ence of the static 1/x potential considerably complicates th
resulting mapping equations. This problem is avoided
modeling the drive term in the square brackets in Eq.~5.1!
by a train of alternatingd kicks. This way we obtain the
equation of motion

ẍ1@2adp~t!1bdp~t2p/2!#xa50, ~5.2!

FIG. 3. Poincare´ sections for the dynamic Kingdon trap at di
ferent values of the control parameterh: ~a! h54 ~before the first
bifurcation!, ~b! h53.05 ~after the first bifurcation!, and ~c! h
52.936~after the second bifurcation!.
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1516 57R. BLÜMEL, E. BONNEVILLE, AND A. CARMICHAEL
wheredp(t) is thep-periodicd function. Its Fourier expan-
sion is

dp~t!5
1

p (
n52`

`

exp~2int!. ~5.3!

Using Eq.~5.3! we have

@2adp~t!1bdp~t2p/2!#

52
1

p
@~a2b!12~a1b!cos~2t!

12~a2b!cos~4t!1•••#. ~5.4!

Thus, neglecting higher harmonics in Eq.~5.4!, a good ap-
proximation to Eq.~5.1! is obtained if we choose

a5
p

2
~h2s!, b5

p

2
~h1s!. ~5.5!

We denote by (xn ,vn) the values ofx and ẋ immediately
before the kick att5np and by (xn8,vn8) the respective val-
ues immediately after the kick att5np. Also, we denote by
( x̃ n , ṽ n) the values ofx andẋ immediately before the kick a
t5(n11/2)p and by (x̃ n8 , ṽ n8) the respective values imme
diately after the kick att5(n11/2)p. Then the solution of
Eq. ~5.2! is obtained analytically as a mapping from kic
numbern to kick numbern11 composed of four steps.~i!
propagation over the kick att5np,

xn85xn , vn85vn1axn
a ; ~5.6!

~ii ! free propagation to the kick att5(n11/2)p,

x̃ n5xn1pvn8/2, ṽ n5vn8 ; ~5.7!

~iii ! propagation over the kick att5(n11/2)p,

x̃ n85 x̃ n , ṽ n85 ṽ n2b x̃n
a ; ~5.8!

and ~iv! free propagation to the kick att5(n11)p,

xn115 x̃ n81p ṽ n8/2, vn115 ṽ n8 . ~5.9!

The four steps~5.6!–~5.9! can be condensed into one. W
obtain a mapping that propagates from the kick att5np to
the kick att5(n11)p:

xn115xn1p~vn1axn
a!2

p

2
bFxn1

p

2
~vn1axn

a!Ga

,

vn115vn1axn
a2bFxn1

p

2
~vn1axn

a!Ga

. ~5.10!

The fixed point of Eq.~5.10! is given by
x~1!5H 4

ap
@~a/b!1/a21#J 1/~a21!

, v ~1!52
a

2
@x~1!#a.

~5.11!

Physically the fixed point is important because it correspo
to the stable minimum in which the trapped particle settles
the presence of cooling. The first bifurcation happens at
valueh1 where the fixed point turns unstable. The stabil
properties of the fixed point are determined by the Jacob
matrix

J5S ]xn11

]xn

]xn11

]vn

]vn11

]xn

]vn11

]vn

D ~5.12!

evaluated at the fixed point. Since the mapping~5.10! repre-
sents a Hamiltonian flow, the determinant of the Jacob
matrix J has absolute magnitude 1. Thus the stability of t
fixed point is determined by the trace ofJ. For uTr(J)u,2
the eigenvalues ofJ are complex conjugate points on the un
circle. Thus, the fixed point is stable foruTr(J)u,2. For
uTr(J)u.2 exactly one of the eigenvalues ofJ exceeds 1 in
absolute magnitude and the fixed point is unstable. Thus
first bifurcation happens exactly atuTr(J)u52. The trace ofJ
is easily evaluated. At the fixed point we obtain

Tr~J!5214a~a21!~r21!S 1

r
21D , ~5.13!

where

r5S h2s

h1sD
1/a

. ~5.14!

For r.0 we have Tr(J),2. Thus the first bifurcation hap
pens at Tr(J)522, which yields

r1511
1

a
$16A4a~a21!11% ~5.15!

or

h15s
11r1

a

12r1
a

. ~5.16!

Specializing toa521 ~the dynamic Kingdon trap!, we ob-
tain the mapping

xn115xn1p~vn1a/xn!2
p

2
bxn /~xn

21pxnvn/21pa/2!,

vn115vn1a/xn2bxn /~xn
21pxnvn/21pa/2!.

~5.17!

From Eq.~5.11! we obtain the fixed point and the velocity a
the fixed point
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x~1!5
p

4
uh21u, v ~1!52sgn~h21!. ~5.18!

Approachingh51 from large values ofh, Eq.~5.18! tells us
that the radial position of the trapped particle approac
monotonically the location of the inner electrode. Sin
x(1)50 for h51 this means that the particle encounters
inner electrode at somehc.1. Thus we obtain a lowe
boundh.hc.1 for physically meaningfulh values.

For a521 the trace of the Jacobian is given by

Tr~J!52232/~h221!. ~5.19!

We see that for largeh, uTr(J)u,2, i.e., the fixed point is
stable and so is the trap. In practical terms the result~5.19!
means that there is no problem with finding a suitable ope
tion point for the dynamic Kingdon trap since anyh will
lead to stable trapping if onlyh is sufficiently large. Accord-
ing to Eq.~5.16!, the first bifurcation happens ath153. This
result is very close to the position of the first bifurcation
the continuously driven dynamic Kingdon trap that was d
termined to occur ath153.124 . . . @15#.

It is even possible to compute the location of the seco
bifurcation of the mapping~5.17! analytically. The computa-
tions are lengthy and tedious and are not reproduced h
The result ish2537/1352.846 . . . . This result too com-
pares very favorably with the location of the second bifur
tion of the cw-driven dynamic Kingdon trap computed to
h252.938 . . . @15#.

Specializing toa522 ~the monopole trap!, we obtain
r153. Fromr1 we computeh155/4 andx(1)5p/16. Again
these results compare favorably with the location of the fix
point and the location of the first bifurcation of the monopo
trap.

Laser cooling is simulated by adding a small damp
term to Eq.~5.2!. We obtain the damped kicked nonline
Mathieu equation

ẍ1g ẋ1@2adp~t!1bdp~t2p/2!#xa50. ~5.20!

In analogy to Eq.~5.10! we obtain the mapping equations fo
Eq. ~5.20! in the form

xn115xn1m~11l!~vn1axn
a!2bm@xn1m~vn1axn

a!#a,

~5.21!

vn115l2~vn1axn
a!2bl@xn1m~vn1axn

a!#a,

where

l5exp~2gp/2!, m5~12l!/g. ~5.22!

The damping term ensures that we follow adiabatically
stable branches of the bifurcation tree. Withg50.01 we ob-
tain the bifurcation diagram shown in Fig. 1~b!. It may be
compared with the bifurcation diagram of the continuou
driven dynamic Kingdon trap shown in Fig. 1~a!. The bifur-
cation diagrams are qualitatively the same and quantitativ
similar. This proves that even as far as the route to chao
concerned, the kicked Kingdon trap is a very good model
s

e

a-

-

d

re.

-

d

e

ly
is
r

the cw-driven dynamic Kingdon trap. It should also be me
tioned that kicked traps not only are a useful construct in
analysis of the cw-driven traps but they are also a theor
cally legitimate and practically realizable model in them
selves.

VI. DISCUSSION

It may seem that the dynamic Kingdon trap is not a re
istic device since it requires the cylinder to be infinitely e
tended. This is not the case. A finite device is obtained eit
by the use of end caps@15# or by ‘‘tapering’’ the ends of the
cylinder. This way the trapped particle is focused towa
the symmetry plane of the trap, where it experiences exa
the same forces as in the case of an infinite cylinder. Thus
the theoretical analysis presented in the previous sect
applies without change to tapered traps or traps with
caps. That this principle works in practice was recently de
onstrated with the open geometry monopole trap@22#.

Another cause for concern may be the use of impuls
kicks in our analytical analysis presented in Sec. V. It is tr
that in the case of cw-driven traps the kicks are an appro
mation to the continuous time dependence of the drive te
This approximation becomes progressively better as
drive term is approximated with more and more kicks. Ho
ever, there is another way of looking at the kicks. The kic
may become an excellent approximation to the exact t
dependence of the drive term in case the traps are dr
with narrow pulses generated by a pulse generator. S
schemes were previously suggested in the context of lo
ization studies with diatomic molecules@29#. However,
while the driven molecules need to be perturbed with pul
with a repetition rate of the order of gigahertz, and requir
pulse width of the order of picoseconds, the pulses for
realization of a kicked Kingdon trap, e.g., may be in t
megahertz region where sharp pulses can be produced w
out any technical problems. The frequency requirements
even less stringent in the case of trapped macroscopic
ticles @22,30#.

VII. SUMMARY AND CONCLUSIONS

In this paper we presented a detailed analysis of the
namic Kingdon trap and the monopole trap for cw and i
pulsive drives. In the course of our analysis it proved con
nient to define a class of nonlinear equations, the general
nonlinear Mathieu equations. These equations themse
constitute a promising field of analysis for future investig
tions. We presented a qualitative analysis of the general
nonlinear Mathieu equations within the framework of t
pseudopotential theory. We showed that both traps, the
namic Kingdon trap and the monopole trap, exhibit a bifu
cation scenario of the fundamental stable trapping island
addition we showed in the case of the dynamic Kingdon t
that the trapping island is surrounded by Hamiltonian cha
We succeeded in computing analytically the location of
first bifurcation for the kicked nonlinear Mathieu equation
In the case of the kicked dynamic Kingdon equation we w
able to compute analytically the location of the second bif
cation point. Approximate analytical expressions for the
cation of the first bifurcation point were computed in th
case of the cw-driven traps. Experiments, such as the
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conducted at the Max-Planck-Institute in Munich, are n
beginning to explore the rich dynamics of this class of tra
Of special interest is the quantum mechanics at bifurca
points. We propose to use strongly defocusing traps suc
the dynamic Kingdon trap or the monopole trap as exp
mental devices for the exploration of this topic of bas
quantum-mechanics research.
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